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Outline
• High Performance Computing

– Scalable numerical kernel solvers
– Performance optimization

• Distributed Computing
– Mobility and mobility of legacy code
– Performance prediction and task scheduling

• Pervasive Computing (not cover)

• Application
• Conclusion
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Scalable Numerical Algorithms

• Motivation
– Parallel codes have been developed during last 

decade 
– The performances of many codes suffer in a 

scalable computing environment
• Achievement

– Scalable tridiagonal solvers
– Fast and high-order Poisson solvers
– Iterative Helmholtz equation algorithms
– Domain decomposition methods
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The Reduced System

Generally needs global communication, Decay for diagonal 
dominant systems

Sample: The PDD algorithm & its applications

The Parallel Diagonal Dominant (PDD)
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Scaled Speedup of the PDD Algorithm 
on Paragon. 1024 System of order 1600, 
periodic & non-periodic

Scaled Speedup of the Reduced PDD 
Algorithm on SP2. 1024 System of Order 
1600, periodic & non-periodic
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The Parallel Two-Level Hybrid Method

• Use an accurate 
parallel tridiagonal
solver to solve the m
super-subsystems 
concurrently, each 
with  k processors

• Modify PDD 
algorithm and consider 
communications only 
between the m super-
subsystems.

Combine the PDD with the Pipelining



X. Sun, Feb.  2004

Pipelining

PPD

PDD

PDD, Pipelining, PPD (hybrid)
for NLOM Tridiagonal Systems
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Pipelining

PPD

PDD

PDD, Pipelining, PPD 
for NLOM Poisson Equations
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High Performance Computing Mobility (HPCM)
• With the rapid advance of communication, the next 

generation computing will be: Mobile Computing
• Current successes of mobile computing are based on 

safe-languages such as Java, which is slow and 
cannot apply to legacy codes

• The HPCM middleware makes codes written in 
traditional languages such as Fortran, C, C++ 
migratable 

Distributed Computing
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Technical Challenges of HPC mobility

• How to transfer Execution State?
• How to transfer Memory State?
• How to transfer Communication State?
• How to transfer process state efficiently? 
• How to transfer process state automatically?
• How to support process migrate from one virtual 

organization to another in a Grid environment?
• How to support mobility in hybrid Java-native 

code environment?
• How to design a coordinated middleware?
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Mobility of Legacy Code

• We have developed novel methodologies and a 
prototype system, HPCM,  to migrate codes 
written in traditional languages such as Fortran, 
C, C++ 

continue

–Two level mobility: migrate native 
codes under Java virtual machine
–General methods: migrate between 
different computing systems and 
different virtual organizations.
–Leading technology, strong 
mobility
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Performance and Scheduling
• New challenge in Grid Computing 

– Resources are shared
– Data are shared resources

• New challenge in high performance computing
– Memory hierarchy  and data access delay
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The Grid Harvest Service (GHS) System

• A long-term application-level performance 
prediction and scheduling system for non-
dedicated distributed (Grid) environments

• A new prediction model derived via  
probability analysis and simulation

• New scheduling heuristics for resource, QoS, 
and data conscious scheduling

• Runtime dynamic scheduling
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Performance Model

• Remote job has low priority
• Local job arriving and service time based on extensive 

monitoring and observation
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Prediction Formula

• Parallel task completion time

• Homogeneous parallel task completion time

• Mean time balancing partition
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List a set of  lightly loaded machines ;
List all possible sets of machines, such as

For each machine set                     ,
Use mean time balancing partition to partition the task 
Use the formula to calculate the mean and coefficient of variation 
If   > , then               ;

End For
Assign parallel task to the machine set        ;
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Scheduling Algorithms

Scheduling with a Given Number of Sub-tasks
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List a set of  lightly loaded machines ;
While                 do
Scheduling with       Sub-tasks

If >                         , then 
;

End If
End while
Assign parallel task to the machine set        .
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Optimal Scheduling Algorithm
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• List a set of  lightly loaded machines ;
• Sort the machines in a decreasing order with                 ;
• Use the task ratio to find the upper limit  q ;
• Use bi-section search to find the p such as                                       

is minimum

},{ ,21 qmmmM �=

Heuristic  Scheduling Algorithm
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for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts mj (in a fixed arbitrary order)

CTij = ETij +  dj
do until all tasks with high QoS request in Mv are mapped

for each task with high QoS in Mv,  find a host in the QoS qualified host 
set- that obtains the earliest completion time
find the task tk with the minimum earliest completion time 
assign task tk to the host ml that gives it the earliest completion time
delete task tk from Mv
update dl
update CTil for all i

end do
do until all tasks with low QoS request in Mv are mapped

for each task in Mv find the earliest completion time and the 
corresponding host 
find the task tk with the minimum earliest completion time
assign task tk to the host ml that gives it the earliest completion 
time
delete task tk from Mv
update dl
update CTil for all i

end do

QoS Guided Min-Min Heuristics
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For a group of tasks Ti
Get MCT0 based on data replica placement.

For each task in the metatask but not run yet
If subtask tij needs data dn

For all Sm in Sites
Compute MCTm based on DDT from host 1 to m.
Get minimum MCTmin

Endfor
If MCTmin < MCT0

Copy dataj from host 1 to host r
MCT0 = MCTmin

Else
Do not copy

Endfor

Data-Conscious Scheduling Heuristics
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Rescheduling Algorithm

Measure the prediction error of 
the system utilization, PU(k) 

PU(k) > threshold ? 
NO 

Find the best machine or machine set 
for task reallocation 

Calculate the expectation of T(reassign) 
and T(original): E(R) and E(O) 

E(O) - E(R) > 0 ?

Task Reallocation 

Running application until next 
monitor period 

NO 
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GHS Design: System Architecture

 

 

Figure. 1. A framework of GHS task scheduling system 
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Application-level Prediction

Remote task completion time on single machine
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Prediction of parallel task completion time

Prediction of a multi-processor with local scheduler
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Comparison with NWS

0

50

100

150

1 2 4 8 16 24
remote t ask demand 

( hour s )

p
r
e
d
i
c
t
i
o
n
 
e
r
r
o
r
 
(
%
)

NWS ( 10 seconds)
NWS ( 5 mi nut es )
GHS

Mean of the prediction error of NWS and GHS



X. Sun, Feb.  2004

Performance Gain with Scheduling

Execution time with different scheduling strategies
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Data Access Optimization
• Data access is the bottleneck of high 

performance computing
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Solution Approach

• Memory access pattern significant impact on comm. 
• Impact differently on different machines
• The memory LogP model
• Optimization methods
• Application on MPI applications

Non-Contiguous 
data

Non-Contiguous 
data

Factor of 
3!

P 1 P 2

Contiguous 
data

send 
time

.176 us

stride = 16 bytes

.551 us

Contiguous 
data

Memory communication cost can be significant for real 
applications.



X. Sun, Feb.  2004

Sender user space

CPU

Memory hierarchy

Network Buffer

Network Buffer

Memory hierarchy

System space
(Interconnect Cloud) 2o + L†L

os

or

Application buffer

The memory logP model
l: the additional latency in transfer non-contiguous data of  
data size (s) and distribution (d) for a given implementation 
of data transfer on a given system, l=f(s,d)

g

g

† Assume g = o, common simplification of LogP model

o: the data transfer overhead, defined as the length of 
time to transfer contiguous data of  data size (s) and 
distribution (d) for a given implementation of data transfer 
on a given system, l=f(s,d)

For ideal case, o remains constant with size.

g: the gap, defined as the minimum time interval between 
consecutive message receptions at a processor.  The 
reciprocal of g corresponds to the available per-
processor bandwidth for a given implementation of data 
transfer on a given system.

P: the number of processor/memory modules

Receiver user space

CPU

Application buffer

ls

lr

Total Comm Cost = 2(o+l) + L
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Bound on hardware performance

o parameter of LogP model

Bound on middleware + hardware performance

o parameter of memory logP model

Bound on application + middleware + hardware performance

l parameter of memory logP model for given d

data size
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Performance bounds using memory-logP
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Case Study: Matrix Transpose on a SGI O2000 
using MPI middleware for communication

Network

Memory

P P P
C C C

Shared Memory Buffer

Application Buffer

Network Buffer

3b3a

Memory

P P P
C C C

Shared Memory Buffer

1a

1b

2b
2a

Application Buffer

Network Buffer

Comm. critical paths:  Non-Cont. data need 
go through the application buffer first
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Quantifying Communication Cost for Matrix 
Transpose
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NO

YES

YES

NO

MPI communication function   

Is datatype  
predefined?

Retrieve data access pattern   

Can performance be
improved? 

Select suitable packing 
function

Calculate optimization 
parameters

Pack data into contiguous  
buffer

Template 
Packing 

functions

Use original MPI 
function

Network buffer

Architectural 
information
(cache and 
TLB info)
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Improved performance of MPI derived datatypes

Optimized MPICH performance
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Bandwidth Improvement

Communication bandwidth
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• Worked on a cosmology application called ENZO
– SAMR (Structured Adaptive Mesh Refinement) 

application in astrophysics and cosmology
– Developed by G. Bryan and M. Norman 

• Three major tasks:
– Conducted a detailed performance analysis 
– Developed a novel dynamic load balancing (DLB) 

scheme for ENZO on parallel systems
– Extended the code to the Computational Grid

The Cosmology Application
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Task 1: Performance Analysis

• Overall characteristics
– Manual instrumentation with FPMPI tool 

• I/O performance
– Use Pablo toolkit

• Adaptive characteristics
– Coarse granularity
– High magnitude of imbalance
– Different patterns of imbalance
– High frequency of refinements
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Task 2: Parallel DLB

• Design a DLB scheme for SAMR applications 
considering their adaptive characteristics 

• Moving-grid phase
– Directly move excess grids from overloaded proc. to 

underloaded proc.
– Minimize grid movements by global information
– Address the high frequency and different patterns

• Splitting-grid phase
– Split the largest grid on the overloaded proc. 
– Address the coarse granularity
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Total Execution Time
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Imbalance Ratio 
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Task 3: Extension to Grid

• Extend the improved version to the Grid
– Alliance’s Grid

• One major issue: a new DLB scheme for 
distributed environment
– Heterogeneity of processors
– Heterogeneity of networks
– Dynamic features of networks
– Adaptive features of applications
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Experiments

• DS1: LAN-connected

• DS2: WAN-connected (two locations)

• DS3: WAN-connected (two countries)

ANL (16 nodes)ANL (16 nodes) ANL (16 nodes)ANL (16 nodes)

SGI Orign2000SGI Orign2000
250 MHz250 MHz

SGI Orign2000SGI Orign2000
250 MHz250 MHz

Gigabit EthernetGigabit Ethernet

NCSA (8 nodes)NCSA (8 nodes) ANL (8 nodes)ANL (8 nodes)

ATMATM OCOC--33

SGI Orign2000SGI Orign2000
250 MHz250 MHz

SGI Orign2000SGI Orign2000
250 MHz250 MHz

NCSA (8 nodes)NCSA (8 nodes)
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StarTap StarTap 
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Conclusion

• Memory Model and Algorithms: Improve 
high performance computing

• Mobility plus Dynamic Scheduling: improve 
performance, reliability, availability, QoS, 
and trustiness of distributed computing

• Application-level Performance Optimization
• Fermi Applications: Performance analysis 

and enhancement, implementation on Grid, 
such as the TeraGrid 


